Bubble Growth in Cosmological 1st Order Phase Transitions: Runaway Walls vs Hydrodynamic Obstructions

J. R. Espinosa, T. Konstandin, J. M. No and G. Servant, JCAP 1006 (2010) 028

T. Konstandin, J. M. No and G. Servant, in Preparation

Motivation

Why Bubbles? -> Phase Transitions in the Early Universe

If 1st Order...

Nucleation & Growth of True Vacuum Bubbles in False Vacuum Sea.

(Nucleation Temperature T_N)

Bubble Growth in Cosmological Phase Transitions Relevant for:

• Electroweak Baryogenesis

1st Order Phase Transition = 3rd Sakharov condition. Viable Baryogenesis $\rightarrow v_w < c_s$ ($v_w << 1$ is Favoured)

• Stochastic Background of Gravitational Waves

Bubble Collisions ($\propto {
m v}^4$) + Turbulence in Plasma

Formalism

• Matching Equations Across the Bubble Wall.

4 Higgs Equation of Motion. (Needed to fix ξ_{w})

Hydrodynamic Obstruction

Higgs EoM:

Steady State Solution

Suppose Deflagration Solution:

- As Wall Moves, Reheats Plasma in Front $(T_+ > T_N)$.
- \Rightarrow As V_w Increases, T_+ Raises $(T_+ \uparrow if \lor_w \uparrow)$.
- \Rightarrow As \top_{+} Raises, $F_{d'}$ Decreases ($F_{d'} \downarrow$ if $\top_{+} \uparrow$).

It could happen that $F_d \rightarrow 0$ for $V_w < C_s$ Hydrodynamic Obstruction!!

Criterium for Hydrodynamic Obstruction:

$$\alpha_{N} < \alpha_{c} \operatorname{Exp}\left(\frac{16}{3\left(1+\alpha_{c}\right)}\Omega(\alpha_{c})\right) \qquad \text{With} \qquad \Omega(\alpha_{c}) \equiv \sqrt{\frac{\alpha_{c}}{2}} - \frac{3}{10}\alpha_{c} - \frac{1}{5}\alpha_{c}^{3/2} \qquad \text{Saturates Inequality}$$

$$If \ \textit{Obstruction Occurs,} \quad \top_{+} > \quad \top_{C} > \quad \top_{-}$$

$$\bullet \ \textit{Lower Limit} \ (T_{+} = T_{C}): \quad v_{w}^{\max} = \sqrt{\frac{1}{6\alpha_{c}}}\operatorname{Log}\left(\frac{T_{c}}{T_{N}}\right)$$

$$(V_{+} < 1 \ approximation)$$

• Upper Limit ($T_{-} = T_{C}$): $v_{w}^{\max} = \sqrt{\frac{1}{3\alpha_{c}}} \operatorname{Log}\left(\frac{T_{c}}{T_{N}}\right)$

2 Fluid Equations for Plasma. $\begin{pmatrix} \partial_{\mu} T^{\mu\nu}_{Plasma} = 0 \\ v(r,t) = v(\xi = r/t) \end{pmatrix}$

3 Fluid Solutions.

Supersonic \vee_{W} . Fluid at Rest in Front of Wall.

V = V + > V - > C

Rarefaction Wave Behind Wall. $\uparrow_{+} = \uparrow_{N}$

→ Hybrids.

 $0.7 - \alpha_{N} = 0.3$ $0.5 - \alpha_{N} = 0.3$ $0.3 - \alpha_{N} = 0.3$ $0.2 - \alpha_{N} = 0.3$ $0.1 - \alpha_{N} = 0.3$ $0.2 - \alpha_{N} = 0.3$ $0.3 - \alpha_{N} = 0.3$

Runaway Walls

Higgs EoM:

$$\partial_{\mu}\partial^{\mu}\phi + rac{\partial\mathcal{F}}{\partial\phi} - \mathcal{K}(\phi) = 0$$
 $F_{fr} = \int dz\,\partial_{z}\phi\mathcal{K}(\phi)$ $F_{dr} = \int dz\,\partial_{z}\phi\frac{\partial\mathcal{F}}{\partial\phi}$

Driving Force Friction Force

• If $F_d < F_{fr}$:

Friction Equilibrates with Driving Force.

Steady State Solution.

(Deflagrations/Hybrids/Detonations)

• If $F_d > F_{fr}^{max}$:

Existing does not Equilibrate Drivi

Friction does not Equilibrate Driving Force.

Runaway Solution.

Continuous Acceleration (No Steady State)

Runaway Criterium ($F_d > F_{fr}^{nax}$

If $\alpha_N > \alpha_\infty$, Some Energy into Higgs Field

Energy Budget Altered!!

Even for Vanishing Friction, Small V_w Still Possible (depends on α_N). (Hydrodynamic Obstruction to Larger V)

(Also, Detonation Parameter Space Drastically Reduced).

Runaway Solutions Change Energy Budget of 1st Order Phase Transitions.

May Change Gravitational Wave Spectrum (Mainly Turbulence)